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Abstract.  In this paper we propose two algorithms for the construction of regular 

polygons. The first algorithm is for generating a regular polygon with the coordinates of 

vertices of one side given and the second algorithm generates a regular polygon with a 

given side length using properties of nth root of unity. Both algorithms are of computational 

complexity O(n). The algorithms not only generate the requisite polygon but enables us to 

compute the exact coordinates of the vertices, as they may be required in certain problems 

in computational geometry. 
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1 Introduction 

As a result of ever increasing power and capability of graphics hardware, computer 

graphics algorithms are being increasingly used in many scientific and technological areas 

[1]. Obviously the generation of basic geometric shapes such as circles, lines, triangles, 

polygons is of fundamental significance in the field. Polygons in particular are widely put 

to use in computer graphics for the rendering of three dimensional objects. Usually 

triangular, polygons arise when an object’s surface is modelled, vertices are selected, and 

the object is rendered in a wire frame model. As wire frame models are quicker to display, 

it is only natural that polygons should arise as stage in computer animation. The polygon 

count refers to the number of polygons being rendered per frame. As the fifth generation 

of video game consoles became commercially widespread, the use of polygons became 

more common, and with each succeeding generation, polygonal models became 

increasingly complex [2, 3]. In this article we propose two algorithms for the generation of 

regular convex polygons with any number of sides. Both algorithms have a time 

complexity of O(n). The proposed algorithms also enable to compute the exact coordinates 

of the vertices, which are needed in some problems arising in computational geometry. 

 3. First Algorithm for constructing a regular Polygon 
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In this section we are going to present our first algorithm for the construction of a regular 

polygon with one side given. This algorithm assumes that the coordinates of the two 

vertices of a side are known. 

Consider a segment OA on the X-axis, where O is the origin of XY-plane. A simple 

observation tells us that a regular polygon with one side as OA can be obtained by the 

following procedure (see Figure 2): 

1 Take θ =
(n−2)π

n
. 

2 Rotate OA about A in clockwise direction about θ, taking point O to O′. 

3 A → O and O′ → O and repeat step 2 till we reach back to origin. 

In total we need (n − 1) steps to obtain a regular polygon of n sides. So the 

procedure essentially involves rotating a segment, AB in XY-plane with the 

coordinates of A and B known, and keeping track of new positions of B. We find 

out the transformation that achieves precisely this objective as follows: 

 

        

 

 Figure 1: Rotation of AB with angle α.                                 Figure 2: Translation of axes. 

 

Consider a segment AB with A ≡ (x0, y0) and B ≡ (x1, y1), and rotating AB around B 

clockwise by angle α. Shift origin to B so that the new axes are X′ and Y′. The coordinates 

(x′, y′) of A relative to X′ − Y′ axes are given by 

x0 = x
′ + x1,

y0 = y
′ + y1
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or equivalently, x′ = x0 + x1, y
′ = y0 − y1. 

In complex form A in X′ − Y′ is given by 

x′ + iy′ = (x0 + x1) + i(y0 + y1) 

Since multiplying a complex number z by eiα rotates counter clockwise by an angle α, the 

coordinates of At are obtained as 

O′At
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = (x′ + iy′) ⋅ e−iα

 = (x′ + iy′)(cos α − isin α)

 = (x′cos α − y′sin α) + i(y′cos α − x′sin α)

 = [
cos α sin α
−sin α cos α

] [
x′

y′
]

 = [
cos α sin α
−sin α cos α

] [
x0 − x1
y0 − y1

] ,

 

 

which yields the following values of At
′ . 

xt  = (x0 − x1)cos α + (y0 − y1)sin α,

 and yt  = −(x0 − x1)sin α + (y0 − y1)cos α.
 

Translating origin back to B(x1, y1), the coordinates of new At with respect to the 

coordinate system prior to both translation and rotation are 

x2  = (x0 − x1)cos α + (y0 − y1)sin α + x1,

 and y2  = −(x0 − x1)sin α + (y0 − y1)cos α + y1.
 

If (xi, yi), i = 0,1,2, … n are the coordinates of the vertices in anticlockwise order, then at 

the ith  iteration; 

xi+1  = (xi−1 − xi)cos α + (yi−1 − yi)sin α + xi
yi+1  = (xi−1 − xi)sin α + (yi−1 − yi)cos α + yi

 

or,  

[
xi+1
yi+1

] = [
cos α sin α
−sin α cos α

] [
xi−1 − xi
yi−1 − yi

] + [
xi
yi
] 

Illustration of the above algorithm: Let’s try to construct a square with two vertices at (0,0) 

and (1,0) using first algorithm. 
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[
x0
y0
] = [

0
0
]

[
x1
y1
] = [

1
0
]
 

For α = 90∘ 

[
x2
y2
]  = [

0 1
−1 0

] [
−1
0
] + [

1
0
]

 = [
1
1
]

[
x3
y3
]  = [

0 1
−1 0

] [
0
−1
] + [

1
1
]

 = [
0
1
]

[
x4
y4
]  = [

0 1
−1 0

] [
1
0
] + [

1
1
]

 = [
0
0
]

 

which is the same as the starting vertices. 

3. Second Algorithm for constructing a regular Polygon 

In this section we present our second algorithm for the construction of a regular polygon 

with given side length. This algorithm utilises the geometrical properties of the roots of 

unity for the construction of a regular polygon. 

Firstly, we start with the fact that the nth roots of unity are given by: 

xn  = 1
 or xn  = e2πkι

 

Some basic algebra reveals that the n roots can be written as 

ωk = e
2πk
n
ι, k = 0,1,2,⋯ , n − 1 

It can easily be seen that all the n complex numbers given by equation (3.1) lie on the circle 

|z| = 1 

Further, 

|ωj −ωk| = cis 
2πj

n
− cis 

2πk

n
, 
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where cis θ = cos θ + ιsin θ. When ωi, ωj are adjacent vertices of a polygon then k =

j + 1, so that the above expression becomes 

|ωj −ωk| = 2 |cis 
jπ

n
− cis

(j + 1)π

n
|

|ωj −ωk| = 2cos 
2π

n

 

In order to show that |ωj −ωj+1| is indeed constant for a given n, we use another property 

of the nth roots, which is ωj = ω
j, so that 

|ωj −ωj+1| = |ω
j(1 − ω)|

|ωj −ωj+1| = |1 − ω|
 

with ω = cos 
2π

n
+ ιsin 

2π

n
, the distance l(n) between adjacent roots |1 − ω| evaluates to 

l(n) = √(1 − cos 
2π

n
)
2

+ (sin 
2π

n
)
2

 

Analogously, the distance between two consecutive nth roots of a positive real number r is 

given by 

lr(n) = r
1
n√(1 − cos 

2π

n
)
2

+ (sin 
2π

n
)
2

 

This means if the length of regular polygon with n sides is to be l, the vertices will be given 

by the nth primitive roots of the real number r where, r is given by 

 

r =

(

 
l

√(1 − cos 
2π
n )

2

+ (sin 
2π
n )

2

)

 

n

 

Hence the steps in our second algorithm can be summed up as follows 

1 For given number of sides n and side length l we take 



Webology (ISSN: 1735-188X) 

Volume 15, Number 1, 2018 

 

224                                                        http://www.webology.org 
 

r =

(

 
l

√(1 − cos 
2π
n )

2

+ (sin 
2π
n )

2

)

 

n

 

2 For k = 0,1, … , n − 1 

xk = r
1/ncos (

2πk

n
)

yk = r
1/nsin (

2πk

n
)

 

3 The output is the ordered list of vertices [(x1, y1), (x2, y2), … , (xn, yn)] of the 

required polygon in counter clockwise fashion. 
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Python Code for Implementation 

import sympy 

from sympy import symbols 

from sympy import * 

init_printing(use_unicode=True) 

x0, y0, x1, y1, x2, y2, t= symbols('x0 y0 x1 y1 x2 y2 t') 

x0, y0, x1, y1 = 0, 0, 1, 0 

n = int(input("enter the number of sides")) 

t = (n-2)*pi/n 

cord = [] #stores the co-ordinates of vertices 

 

for i in range(n+1): 

  x2 = cos(t)*(x0 - x1)+sin(t)*(y0 - y1)+x1 

  y2 = -sin(t)*(x0 - x1)+cos(t)*(y0 - y1)+y1 

  x2 = simplify(x2) 

  y2 = simplify(y2) 

  cord.append(Matrix([[x2],[y2]])) 

  x0,y0 = x1,y1 
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  x1,y1 = x2,y2 

   

import matplotlib.pyplot as plt 

xlist=[] 

ylist=[] 

for i in range(n+1): 

  xlist.append(cord[i][0]) 

  ylist.append(cord[i][1])   

ax = plt.axes() 

ax.set_aspect(1) 

plt.plot(xlist, ylist) 

plt.show() 


