
Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

219 http://www.webology.org

Two Algorithms For Constructing A Regular Polygon

Of Given Side Length

Sajad A. Sheikh⋆

⋆Department of Mathematics, University of Kashmir, South Campus, Anantnag 192101,

Jammu and Kashmir, India.

Abstract. In this paper we propose two algorithms for the construction of regular

polygons. The first algorithm is for generating a regular polygon with the coordinates of

vertices of one side given and the second algorithm generates a regular polygon with a

given side length using properties of nth root of unity. Both algorithms are of computational

complexity O(n). The algorithms not only generate the requisite polygon but enables us to

compute the exact coordinates of the vertices, as they may be required in certain problems

in computational geometry.

Keywords: Regular Polygon; Algorithm; Graphics; Geometry; Python.

1 Introduction

As a result of ever increasing power and capability of graphics hardware, computer

graphics algorithms are being increasingly used in many scientific and technological areas

[1]. Obviously the generation of basic geometric shapes such as circles, lines, triangles,

polygons is of fundamental significance in the field. Polygons in particular are widely put

to use in computer graphics for the rendering of three dimensional objects. Usually

triangular, polygons arise when an object’s surface is modelled, vertices are selected, and

the object is rendered in a wire frame model. As wire frame models are quicker to display,

it is only natural that polygons should arise as stage in computer animation. The polygon

count refers to the number of polygons being rendered per frame. As the fifth generation

of video game consoles became commercially widespread, the use of polygons became

more common, and with each succeeding generation, polygonal models became

increasingly complex [2, 3]. In this article we propose two algorithms for the generation of

regular convex polygons with any number of sides. Both algorithms have a time

complexity of O(n). The proposed algorithms also enable to compute the exact coordinates

of the vertices, which are needed in some problems arising in computational geometry.

 3. First Algorithm for constructing a regular Polygon

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

220 http://www.webology.org

In this section we are going to present our first algorithm for the construction of a regular

polygon with one side given. This algorithm assumes that the coordinates of the two

vertices of a side are known.

Consider a segment OA on the X-axis, where O is the origin of XY-plane. A simple

observation tells us that a regular polygon with one side as OA can be obtained by the

following procedure (see Figure 2):

1 Take θ =
(n−2)π

n
.

2 Rotate OA about A in clockwise direction about θ, taking point O to O′.

3 A → O and O′ → O and repeat step 2 till we reach back to origin.

In total we need (n − 1) steps to obtain a regular polygon of n sides. So the

procedure essentially involves rotating a segment, AB in XY-plane with the

coordinates of A and B known, and keeping track of new positions of B. We find

out the transformation that achieves precisely this objective as follows:

 Figure 1: Rotation of AB with angle α. Figure 2: Translation of axes.

Consider a segment AB with A ≡ (x0, y0) and B ≡ (x1, y1), and rotating AB around B

clockwise by angle α. Shift origin to B so that the new axes are X′ and Y′. The coordinates

(x′, y′) of A relative to X′ − Y′ axes are given by

x0 = x
′ + x1,

y0 = y
′ + y1

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

221 http://www.webology.org

or equivalently, x′ = x0 + x1, y
′ = y0 − y1.

In complex form A in X′ − Y′ is given by

x′ + iy′ = (x0 + x1) + i(y0 + y1)

Since multiplying a complex number z by eiα rotates counter clockwise by an angle α, the

coordinates of At are obtained as

O′At
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (x′ + iy′) ⋅ e−iα

 = (x′ + iy′)(cos α − isin α)

 = (x′cos α − y′sin α) + i(y′cos α − x′sin α)

 = [
cos α sin α
−sin α cos α

] [
x′

y′
]

 = [
cos α sin α
−sin α cos α

] [
x0 − x1
y0 − y1

] ,

which yields the following values of At
′ .

xt = (x0 − x1)cos α + (y0 − y1)sin α,

 and yt = −(x0 − x1)sin α + (y0 − y1)cos α.

Translating origin back to B(x1, y1), the coordinates of new At with respect to the

coordinate system prior to both translation and rotation are

x2 = (x0 − x1)cos α + (y0 − y1)sin α + x1,

 and y2 = −(x0 − x1)sin α + (y0 − y1)cos α + y1.

If (xi, yi), i = 0,1,2, … n are the coordinates of the vertices in anticlockwise order, then at

the ith iteration;

xi+1 = (xi−1 − xi)cos α + (yi−1 − yi)sin α + xi
yi+1 = (xi−1 − xi)sin α + (yi−1 − yi)cos α + yi

or,

[
xi+1
yi+1

] = [
cos α sin α
−sin α cos α

] [
xi−1 − xi
yi−1 − yi

] + [
xi
yi
]

Illustration of the above algorithm: Let’s try to construct a square with two vertices at (0,0)

and (1,0) using first algorithm.

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

222 http://www.webology.org

[
x0
y0
] = [

0
0
]

[
x1
y1
] = [

1
0
]

For α = 90∘

[
x2
y2
] = [

0 1
−1 0

] [
−1
0
] + [

1
0
]

 = [
1
1
]

[
x3
y3
] = [

0 1
−1 0

] [
0
−1
] + [

1
1
]

 = [
0
1
]

[
x4
y4
] = [

0 1
−1 0

] [
1
0
] + [

1
1
]

 = [
0
0
]

which is the same as the starting vertices.

3. Second Algorithm for constructing a regular Polygon

In this section we present our second algorithm for the construction of a regular polygon

with given side length. This algorithm utilises the geometrical properties of the roots of

unity for the construction of a regular polygon.

Firstly, we start with the fact that the nth roots of unity are given by:

xn = 1
 or xn = e2πkι

Some basic algebra reveals that the n roots can be written as

ωk = e
2πk
n
ι, k = 0,1,2,⋯ , n − 1

It can easily be seen that all the n complex numbers given by equation (3.1) lie on the circle

|z| = 1

Further,

|ωj −ωk| = cis
2πj

n
− cis

2πk

n
,

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

223 http://www.webology.org

where cis θ = cos θ + ιsin θ. When ωi, ωj are adjacent vertices of a polygon then k =

j + 1, so that the above expression becomes

|ωj −ωk| = 2 |cis
jπ

n
− cis

(j + 1)π

n
|

|ωj −ωk| = 2cos
2π

n

In order to show that |ωj −ωj+1| is indeed constant for a given n, we use another property

of the nth roots, which is ωj = ω
j, so that

|ωj −ωj+1| = |ω
j(1 − ω)|

|ωj −ωj+1| = |1 − ω|

with ω = cos
2π

n
+ ιsin

2π

n
, the distance l(n) between adjacent roots |1 − ω| evaluates to

l(n) = √(1 − cos
2π

n
)
2

+ (sin
2π

n
)
2

Analogously, the distance between two consecutive nth roots of a positive real number r is

given by

lr(n) = r
1
n√(1 − cos

2π

n
)
2

+ (sin
2π

n
)
2

This means if the length of regular polygon with n sides is to be l, the vertices will be given

by the nth primitive roots of the real number r where, r is given by

r =

(

l

√(1 − cos
2π
n)

2

+ (sin
2π
n)

2

)

n

Hence the steps in our second algorithm can be summed up as follows

1 For given number of sides n and side length l we take

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

224 http://www.webology.org

r =

(

l

√(1 − cos
2π
n)

2

+ (sin
2π
n)

2

)

n

2 For k = 0,1, … , n − 1

xk = r
1/ncos (

2πk

n
)

yk = r
1/nsin (

2πk

n
)

3 The output is the ordered list of vertices [(x1, y1), (x2, y2), … , (xn, yn)] of the

required polygon in counter clockwise fashion.

References

[1] M. Ramakrishnan, Advanced Methods in Computer Graphics with examples in

 OpenGl, Springer,2012.

[2] S. Rich, A brief History of Video Games.

[3] S. Daniel, Practical Geometry Algorithms with C++.

Python Code for Implementation

import sympy

from sympy import symbols

from sympy import *

init_printing(use_unicode=True)

x0, y0, x1, y1, x2, y2, t= symbols('x0 y0 x1 y1 x2 y2 t')

x0, y0, x1, y1 = 0, 0, 1, 0

n = int(input("enter the number of sides"))

t = (n-2)*pi/n

cord = [] #stores the co-ordinates of vertices

for i in range(n+1):

 x2 = cos(t)*(x0 - x1)+sin(t)*(y0 - y1)+x1

 y2 = -sin(t)*(x0 - x1)+cos(t)*(y0 - y1)+y1

 x2 = simplify(x2)

 y2 = simplify(y2)

 cord.append(Matrix([[x2],[y2]]))

 x0,y0 = x1,y1

Webology (ISSN: 1735-188X)

Volume 15, Number 1, 2018

225 http://www.webology.org

 x1,y1 = x2,y2

import matplotlib.pyplot as plt

xlist=[]

ylist=[]

for i in range(n+1):

 xlist.append(cord[i][0])

 ylist.append(cord[i][1])

ax = plt.axes()

ax.set_aspect(1)

plt.plot(xlist, ylist)

plt.show()

